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ABSTRACT

Principal Component Analysis (PCA) has been often used
for HRTF compression and individualization. However,
there is significant variation in how the input matrix on
which PCA is applied is constructed. Here, we study the
effect of choices on the selection of independent variables,
the domain in which impulse responses are represented,
the HRTF database used, and possible smoothing on the
compression efficiency and the reconstruction quality of
the resulting PCA model. Several findings replicate well
across different databases. Results point to a benefit for
signal compared to space PCA and for using minimum-
phase HRIRs or HRTFs. Smoothing HRTFs leads to an
increase in compression efficiency and a reduction in spec-
tral distortion and using HRTFs with logarithmic magni-
tude leads to lower spectral distortion compared to linear.

1. INTRODUCTION

Head Related Transfer Functions (HRTFs) allow design-
ers and engineers to create 3D audio using headphones [1]
with applications in virtual and augmented reality. HRTF
models that support individualisation, compact represen-
tation, and transfer are important as HRTFs are relatively
long filters that are specific to individual users and need
to be measured for all positions of interest in a relatively
resource-intensive process [2].

A compact HRTF model can be reached by decompos-
ing an HRTF set upon a set of orthogonal basis functions
and obtaining the related weights (or loadings). Such de-
compositions can be used to reduce the, typically high, di-
mensionality of HRTF sets and serve as a basis for com-
pression, individualization, and the investigation of their
numerical and perceptual properties. Most often, Princi-
pal Component Analysis (PCA) e.g., [3–6] and the Spher-
ical Harmonic Transform e.g., [7–9] have been used for
this purpose. More recent approaches focus on deep learn-
ing [10].

This article focuses on using PCA for HRTF modelling.
It is motivated by the fact that HRTF functions have been
arranged in markedly different ways for PCA processing
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in the literature and aims to investigate the extent to which
such differences may affect the compression efficiency and
representation ability of the obtained model.

2. BACKGROUND

2.1 HRTFs

The head-related impulse response (HRIR) h(θ, φ, t) de-
notes the time domain impulse response for a sound orig-
inating at azimuth θ and elevation φ measured at or inside
the ear-canal. The head-related transfer function (HRTF)
H(θ, φ, f ) is the frequency domain representation of the
HRIR. HRTFs are recorded using miniature microphones
for a subject and source position of interest [2], most com-
monly, on a dense sampling grid. Frequently, HRTFs are
diffuse-field equalized to exclude the ear canal resonance
and measurement system response and come in the form
of directional transfer functions (DTFs).

Binaural cues encoded in the interaural transfer function,
IT F = HL(θ, φ, f )/HR(θ, φ, f ) help localize sounds in the
horizontal plane. Monaural cues in the magnitude HRTF
spectrum are used for elevation perception and front/back
and up/down discrimination [11, 12]. These are spectral
peaks and notches between 4 and 16 kHz that are mainly
effected by the shape of the outer ear. For example, a
prominent 1-octave notch centered between 6 and 11 kHz
changes systematically with the vertical source location
[13].

Whereas HRTFs incorporate the effects of the whole
body, pinna-related transfer functions (PRTFs) indicate
only the contribution of the pinna and reduce the depen-
dence with respect to azimuth. They can be calculated
by applying a 1 ms right window at the beginning of the
HRIR signal in order to eliminate reflections by torso and
shoulders [14] and then transformed into frequency do-
main. Such functions are helpful when relating features
in the magnitude spectrum to particular anthropometric di-
mensions. Spectral features below 3 kHz are mainly pro-
duced by head diffraction and torso reflections [15].

2.2 Principal Component Analysis

Principal Component Analysis is normally applied onto a
two-dimensional matrix, with columns defining the inde-
pendent variables and rows containing observations. PCA
can be calculated directly using the eigendecomposition of
the sample covariance matrix CY of the observations or
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using the Singular Value Decomposition [16]. The sam-
ple covariance matrix CY of a set of observations Y with
M rows of observations and N columns of variables corre-
sponding to a random vector is defined as

CY = YT Y . (1)

CY is as a symmetric, real-valued, square matrix. Y needs
to be centered by subtracting the observation means. The
eigenvectors of the covariance matrix CY are also called
the principal components of Y. Since CY is symmetric, it
is also diagonalizable,

CY = V D V−1 , (2)

with a diagonal matrix D (m × m) containing the eigen-
values of CY and V as an orthonormal eigenvector matrix
including the right eigenvectors as columns.

Eigenvectors and eigenvalues may also be obtained
through the singular value decomposition (SVD), using
which Y can be written as

Y = U S VT , (3)

where U are (m×n) and VT (n×n) orthogonal matrices in-
cluding left and right eigenvectors uk and vk, respectively.
S (n × n) is a diagonal matrix with nonzero non-negative
diagonal elements, so that S = diag(s1, ... , sn), also known
as singular values. Note that

YT Y = (U S VT )T (U S VT ) = V S2 VT , (4)

Consequently, the square root of the eigenvalues of YYT

are the singular values (sk) of Y. The original centered data
Y set can be transformed to the new basis by projecting it
on the eigenvector basis V to obtain the principal compo-
nent weight (PCW) (or score) matrix W which can be used
for reconstruction.

W = Y V and Y = W V−1 (5)

Assuming that the matrix Y has a rank r, it follows that
sk > 0 for 1 ≤ k ≤ r and sk = 0 for (r + 1) ≤ k ≤ n and
one can neglect eigenvalues that are very close to zero to
reduce the dimensionality. Y can thus be approximated by
reducing the number of eigenvectors involved in the recon-
struction.

Yl =

l∑︁
k=1

uk sk vT
k + Ȳ , (6)

l is commonly chosen by calculating the number of com-
ponents required to explain, say 90%, of the variance. The
variance explained by l components is given by:

var(l) =

∑︀l
k=1 sk∑︀N
k=1 sk

· 100 [%] , (7)

where sk is the kth singular value, l is the number of a
particular PC and N is the total number of components.
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Figure 1. Spectral differences between unprocessed (128
coefficients) and smoothed DTF magnitude spectrum (with
64, 32, 16, 8 and 4 coefficients) in ARI database.

2.3 Modelling HRTFs using PCA

Head-related transfer function sets are mutli-dimensional
and typically include the the recorded impulse response for
each subject number, direction of sound incidence, and ear.
To proceed with PCA, the dataset needs to be placed into
a 2D input matrix before calculating principal components
and associated weights. Subsequently, the number of re-
quired principal components is determined depending on
the application [6, 14, 17].

Most of the studies use enough components so as 90% of
the variance in the data is explained [3, 15, 18]. Promising
results have been obtained when evaluating sound local-
ization with HRTFs that have been reconstructed with a
limited set of components subject to the aforementioned
variance constraint [3, 19].

Structuring the PCA input matrix: Studies in the litera-
ture differ in the HRTF set used, the domain the signal is
represented in, and in the way they are transformed into a
2D matrix for PCA.

Some studies apply PCA on HRIRs [5, 15, 20–23]. This
is appealing as the time-domain signals maintain delay
and phase information and can easily be windowed to iso-
late the effects of pinna, head, or shoulder. Other stud-
ies use minimum-phase HRIRs [5, 15, 23] which do not
include direction-dependent delays. Several other studies
use HRTF magnitude [3, 4, 17, 24–27] when forming the
PCA input matrix and minimum-phase is used when trans-
forming in the time domain. Minimum-phase is used based
on the assumption that the original signal phase can be dis-
carded and replaced by a direction-dependent delay.

In the case of HRTFs, PCA has been applied to both lin-
ear [4, 28] and logarithmic magnitude spectrum [3, 17, 18,
25, 26, 29] A further difference originates in the number of
points that are used in the DTF to estimate the frequency
spectrum. More recent studies use the complex spectrum
as input to PCA [30, 31].

Most commonly, signal amplitude (time-domain repre-
sentations) or spectral magnitude (frequency-domain rep-
resentations) are used as variables in columns and subjects
and directions of incidence as observations (rows). Re-



cently, an alternative model has been proposed [6] which
uses spatial directions as variables in columns and signal
amplitude or spectral magnitude for each subject in rows.

The way the signals from the left and right ears enter the
PCA input matrix has also been treated in different ways
in literature. Sometimes only one ear is modelled and
the second one is considered to be symmetric and there-
fore duplicated by the modelled one [5, 15]. Alternatively,
it can be attempted to use PCA to explain the variability
across the two ears. This can be done either by using the
time/frequency signals from the second ear as observations
in rows [3, 29] in the PCA input matrix.

PCA has not been always performed on the complete set
of sound directions in the dataset. Decomposition has been
applied on the whole database [3,25], smaller subsets, such
as the median [5, 23] or horizontal plane [22, 32], and on
single sound directions [15]. The latter approach yields
a different set of principal components for each direction,
which may not be optimal from a compression perspective.
However, as the variability due to direction is not present
such an approach allows to focus on individual differences
caused by subjects’ anthropometry for smaller sets.

A final difference is the HRTF database used to per-
form the analysis. In general, principal components ob-
tained from different HTRF datasets are consistent as long
as the number of measurement directions and subjects is
reasonable. This invariance is more evident for compo-
nents explaining a large amount of variance, as compo-
nents of smaller variance reflect specificities that might not
be shared across datasets. Middlebrooks and Green [26]
were among the first who compared basis vectors calcu-
lated from their own measurement data (8 subjects, 360
positions) with an existing database by Kistler and Wight-
man [3] (10 subjects, 265 positions) and indeed confirmed
a high correlation between the components, which how-
ever decreased with rising principal component order num-
ber.

2.4 Summary and Research Questions

The literature review shows that the differences in con-
structing the PCA input matrix relate to the domain used
(time or frequency), the representation (linear or loga-
rithmic magnitude spectrum), the use of minimum-phase
HRIRs, the handling of the two ears, and the number of
directions analyzed. Given the complexity of modelling
HRTFs, it is reasonable to ask what is the impact of choices
for the aforementioned parameters on the compression ef-
ficiency and the reconstruction potential of the obtained
PCA basis. Quite reasonably, researchers would favor an
alignment that can represent and re-synthesize the HRTF
dataset with the lowest possible number of components and
smallest distortion.

Despite the obvious benefit in identifying an optimal
PCA basis, few studies have attempted a direct compari-
son. Leung and Carlile [19] investigated the PCA compres-
sion efficiency and came to the conclusion that the optimal
format for PCA decomposition in terms of compression
is the linear amplitude form in frequency domain. They
used an HRTF dataset of 393 directions. They found that

5 PCs are required for explaining 90% variance when lin-
ear magnitude is used; there were less than the number
required with logarithmic magnitude. However, the num-
ber of subjects or the structure of the PCA input matrix is
not clearly described. Takane et al [33] extend the work
of Liang et al [34] and compare four data representations:
HRIR, complex spectrum HRTF, linear spectral magnitude
HRTF, and log-spectral magnitude HRTF. Sample ampli-
tude (or frequency bin magnitude) appear on input matrix
columns and input structures are evaluated based on ex-
plained variance, signal distortion, and signal-to-distortion
ratio using the KEMAR HATS database [35]. The results
confirm an advantage in using representations in the fre-
quency domain but are somewhat inconclusive otherwise.
The HRIR database used in this study is this of a dummy
head and does not include several or real subjects. Fur-
thermore, the structure of the input matrix structure is not
varied to include spatial PCA. Another parameter that has
not been considered is the extend to which HRTFs were
smoothed. It has been shown that mild spectral smooth-
ing does not affect localization accuracy after reconstruc-
tion [36]. Smoothing may have a positive effect on the
compression efficiency as perceptually-irrelevant details of
HRTF magnitude are smoothed out [37, 38]. For this rea-
son, the smoothing factor is worth including as a param-
eter in simulations. Overall, a more systematic investiga-
tion on the impact of setting up the PCA input matrix on
compression efficiency and reconstruction accuracy is at-
tempted here.

3. NUMERICAL EVALUATION

The parameters varied in the evaluation were: HRTF
database, the structure of the input matrix, the domain
in which the signal was represented, and extent to which
HRTFs have been smoothed as explained below. Compres-
sion efficiency was evaluated by examining the number of
components required to explain 90% of the variance in the
input data and by estimating the error in the reconstruction
accuracy of the original HRTF set. HRTF reconstruction
was evaluated in the frequency domain using the Spectral
Distortion (SD). For an arbitrary subject s and sound inci-
dence from at θ,φ, SD it is calculated by:

S D(s, θ, φ) =

⎯⎸⎷
1
N

N∑︁
j=1

⎡⎢⎢⎢⎢⎣20 log10
|H(s, θ, φ, f j)|

|Ĥ(s, θ, φ, f j)|

⎤⎥⎥⎥⎥⎦2 (8)

where H(s, θ, φ, f j) and Ĥ(s, θ, φ, f j) are measured and es-
timated HRTF logarithmic magnitudes respectively, and f j

refers to the frequency index, and N is the total number
of frequency bins used in the calculation. The synthesized
signal is more similar to the measured one when a small
SD is obtained. According to [39], the spectral distortion
of a reconstructed HRTF should not be greater than 5.7 dB.
To measure spectral distortion, the number of PCs used
in reconstruction was manipulated from one to all PCs in
five steps and the signal distortion was estimated. When
HRIRs were used, original and reconstructed HRIRs were
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Figure 2. The number of PCs required to explain 90% of variance for signal and spatial PCA in the examined cases. HRIRs
were not smoothed and are presented as single points up left on each plot.

transformed in the frequency domain in order to estimate
the spectral distortion. The calculation extended over the
entire frequency range. Simulations were performed in
MATLAB®.

3.1 HRTF Databases

Three open access HRTF databases were used: the Acous-
tics Research Institute (ARI) HRTF database [40], the LIS-
TEN database from the Institut de Recherche et Coordi-
nation Acoustique/Musique [41] and the HRTF database
from the University of California at Davis (CIPIC) [42].
ARI contains HRIRs of 256 samples measured at 1550
sound locations and the first 80 subjects were used here.
CIPIC includes HRIRs of 200 samples from 45 subjects
measured at 1250 sound locations. The LISTEN database
HRIRs of 512 samples from 50 subjects and 187 positions.
Two subjects were excluded from calculations because im-
pulse responses were not measured for all sound direc-
tions. In addition, subject ID 1034 in the LISTEN database
resulted in outlying weights and was excluded from the
dataset.

3.2 PCA Input Matrix Structure

The first structure (Signal PCA) follows a common pat-
tern that has been also used by Kistler and Wightman
[3, 29]. Here, signal bins (in frequency or time domain)
are the independent variables in columns, while replica-
tions for the different subjects and measurement directions
are observations in rows. This leads to an input matrix
with (subjects × sound directions) rows and (signal bins)
columns. The number of rows is doubled if both ears are
included and the resulting principal component weights
(PCWs) for each subject can be used to recreate the HRIR
or HRTF for both ears of each subject and for all directions.

The second structure (Spatial PCA) has (subjects ×
signal bins) rows and (sound directions) columns and was
also used by Xie [6,25]. It lists each sound direction as in-
dependent variable in the matrix columns while frequency

or time samples from the head-related functions of all sub-
jects are placed as observations in rows. The number of
rows is doubled if both ears are included. It has been called
spatial PCA because analyzed directions are independent
variables placed in columns. The resulting weights can be
used to recreate each frequency or time bin for a given po-
sition, ear, and subject. In the simulations, HRTFs from
both ears were entered as observations in rows for both in-
put structures.

3.3 Signal Domain

For each of the input structures, four signal representa-
tions were tested. The first two were in the time domain:
the HRIR and the minimum-phase HRIR. The minimum-
phase HRIR was used because it allows to remove the
direction-dependent initial delay and phase and may re-
duce the number of components required to represent the
signal. Direction-dependent delay can be added after re-
construction in case such a representation is used for com-
pression or individualization. The latter two were in the
frequency domain: the magnitude spectrum in either linear
or logarithmic amplitude, a common difference in studies
applying PCA to HRTFs.

3.4 Smoothing

Smoothing was done by taking the logarithm of the HRTF
spectrum, performing FFT, and limiting the number of the
Fourier coefficients used to recreate the spectrum, a low-
pass filtering operation. Even as few as 16 coefficients
within a spectrum of 512 coefficients, a smoothing factor
of 1/32 for IR length of 1024 samples, were found to yield
satisfactory localization [36]. An example of the output
of the smoothing process is shown in Figure 1. Smooth-
ing was only applied when constructing PCA bases using
HRTFs and not when using HRIRs.
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Figure 3. Spectral Distorion upon reconstruction averaged among subjects, ears, and directions for unsmoothed head related
functions in the conditions examined in the simulations.

4. RESULTS

The results of the simulation ar epresented next starting
from the number of components required to explain 90% of
the input matrix variance and following up with the spec-
tral distortion results.

4.1 Compression Efficiency

By observing Figure 2, it can be seen that the input matrix
structure has a considerable impact on compression effi-
ciency. For the CIPIC and LISTEN databases, most effi-
cient is signal PCA followed by spatial PCA. This is con-
sistent across smoothing factors. For the ARI database,
spatial PCA using either linear or log HRTF magnitude
yields a compression efficiency that is higher than signal
PCA.

Quite clearly, the HRIR representation requires most
components, irrespective of whether signal or spatial PCA
is performed. Taking the minimum-phase HRIR re-
sults in a significant reduction in the number of PCs re-
quired to explain 90% of the variance which makes us-
ing minimum-phase HRIRs comparable to PCA using un-
smoothed HRTFs in terms of compression efficiency. This
result is consistent across the databases examined here.

The number of PCs required by frequency domain rep-
resentations is reduced significantly due to the application
of spectral smoothing. Each time the Fourier coefficients
used in spectral reconstruction are halved, a significant re-
duction in the number of components required to explain
90% variance is observed.

The impact of a linear or logarithmic magnitude rep-
resentation in the frequency domain is not as clear-cut.
For unsmoothed HRTFs, a small advantage for linear am-
plitude representation is registered for the LISTEN and
CIPIC database for both signal and space PCA. As long
as smoothing is applied, the situation is reversed and the
logarithmic representation results in a smaller number of
required components. For the ARI database, a small ad-

vantage for logarithmic magnitude representation appears
which remains consistent as smoothing is applied.

The number of components required to explain 90% of
the variance is consistent across databases for the signal
PCA. However, it varies considerably when spatial PCA
is considered and the number of required components is
doubled for ARI to CIPIC and then the LISTEN database.

4.2 Spectral Distortion

By observing Figure 3, it can be seen that spectral dis-
tortion results are in agreement with the compression effi-
ciency observations. Spectral distortion was highest when
HRIRs were used in the input matrix. Spectral distortion
was reduced significantly when minimum-phase HRIRs
or HRTFs were used. This result is consistent across
databases.

For signal PCA, signal distortion is lowest when
minimum-phase HRIRs and the logarithmic HRTFs are
used in the PCA input matrix and falls below 5 dB as
soon as 5 components are used for reconstruction. Signal
PCA with with linear amplitude HRTFs result in an overall
higher spectral distortion. This result is consistent across
databases.

For spatial PCA, again PCA with minimum-phase HRIRs
or logarithmic magnitude HRTFs result in the lowest spec-
tral distortion which again falls below 5 dB as long as
at least 5 components are used for reconstruction. Spec-
tral distortion is highest for the ARI database for the lin-
ear magnitude HRTFs and the HRIRs compared to the
rest but the differences among databases were smaller for
minimum-phase HRIRs and log-magnitude HRTFs. Inter-
estingly, achieving a spectral distortion below 5 dB re-
quires a higher number of components than the one re-
quired to explain 90% of the variance in the ARI database
for the spatial PCA. By observing Figure 4, it can be seen
that smoothing does seem to reduce spectral distortion.
This effect was consistent across databases input structures
and appeared both for linear and log-magnitude HRTFs.
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Figure 4. Spectral Distorion upon reconstruction averaged across subjects, ears, and sound directions for smoothed head
related functions taken from the LISTEN database.

5. DISCUSSION

In this study, we investigated the impact of choices in the
design of the input matrix used to analyze head related
impulse responses or head related transfer functions us-
ing principal component analysis. The impact of matrix
structure (signal or spatial PCA) and the signal domain
(time or frequency) was manipulated. For the time-domain
HRIRs both raw and minimum-phase HRIRs were com-
pared, while for the frequency domain linear and loga-
rithmic amplitude was compared. Finally, for frequency
domain representations, the impact of spectral smoothing
was also considered. Three different HRTF databases were
used in the analysis. The number of components required
to explain 90% of the variance and the spectral distortion
upon reconstruction were used as objective measures for
the purpose of comparison.

The difference in the number of components required to
explain 90% of the variance among the databases used here
was small for signal PCA compared to spatial PCA. The
variable to observation ratio for spatial PCA was 0.27 for
ARI, 0.15 for CIPIC, and 0.015 for LISTEN, while for
signal PCA it was 0.013 for LISTEN 0.0009 for CIPIC,
and 0.0005 for ARI. The signal PCA configurations have a
better variable to observation ratio which may explain the
better consistency of the results across databases for signal
compared to spatial PCA.

For the LISTEN and CIPIC databases, fewer components
were required to represent 90% of the input matrix vari-
ance and the resulting spectral distortion upon reconstruc-
tion was lower for signal PCA in comparison to spatial
PCA. However, a lower number of components was re-
quired to account for 90% of the variance when analyzing
the ARI database using spatial compared to signal PCA
required, which was even lower when the log-magnitude
spectrum was used. The number of components required
for spatial PCA in the ARI database was consistently small
even when the number of database locations used was
reduced and the variable to observation ratio improved.

However, the suggested number of components yielded in-
creased spatial distortion upon reconstruction and would
need to be increased to keep spectral distortion below 5 dB.
Further incestigation is required to confirm if Spatial PCA
can lead to an effective PCA basis and to explain the dis-
crepancy among databases.

Overall, the raw HRIR representation was the most in-
efficient both in terms of compression efficiency and in
terms of the resulting Signal Distortion upon reconstruc-
tion, in agreement with observations in the literature [33].
Removing the direction dependent delay and phase from
the signals by taking the minimum-phase impulse response
reduced the number of components and the spectral distor-
tion upon reconstruction dramatically and made principal
component analysis as efficient as with input matrices us-
ing spectral HRTFs.

A beneficial effect of smoothing for PCA using HRTFs
was observed which improved compression efficiency and
reduced spectral distortion. As smoothed HRTFs have
been found to provide good sound localization, this may
be a good option to consider in future applications of prin-
cipal component analysis up to the point where localiza-
tion is not affected and coloration does not appear [36]. It
would be interesting to examine if a similar result would
have been observed if the HRIRs were smoothed using a
low pass filter in the time-domain but this was not investi-
gated here.

Concerning the impact of a linear or logarithmic repre-
sentation for PCA analysis based on spectral HRTF data
the results are not as clear-cut. On the one hand, there is a
tendency for lower number of components for representing
90% of the variance for the linear amplitude, as also men-
tioned by [19, 33, 38] but this advantage tends to be can-
celled as long as smoothing is applied. Furthermore, the
logarithmic representation leads to a lower spectral distor-
tion. It appears therefore that the logarithmic representa-
tion may be more efficient if PCA is to be performed on
HRTFs and both criteria are considered.



6. CONCLUSION

We presented a study that investigated the impact of HRTF
database, input structure (signal or space), signal domain
(time or frequency), and HRTF smoothing on the compres-
sion efficiency and the spectral distortion upon reconstruc-
tion when modelling HRTFs using Principal Component
Analysis. The results of the numerical simulations show
that signal PCA has a better compression efficiency (2/3
databases) and lower spectral distortion (3/3 databases)
upon reconstruction. Furthermore, using HRIRs as input
to PCA leads to worse compression efficiency and higher
spectral distortion compared to HRTFs. Using minimum-
phase HRIRs compensates for this discrepancy. Minimum-
phase HRIRs lead to comparable compression efficiency
and spectral distortion compared to HRTFs. Applying
smoothing to HRTFs leads to an increase in compres-
sion efficiency and a reduction in spectral distortion for
all databases used. Logarithmic magnitude leads to lowest
spectral distortion when using HRTFs while compression
efficiency depends on the database used.
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