A Table Lamp
Structure
The lamp consist of cylinders (the foot, the two arms and the lamp shade). Each joint is marked with a sphere.
oneLamp
The lamps are placed on a round "table" in the xy-plane. A lamp is implemented in class oneLamp:
package tablelamp; import javax.media.opengl.GL; import javax.media.opengl.glu.GLU; import javax.media.opengl.glu.GLUquadric; /** * * @author borres */ public class oneLamp { // nice to have private final float G2R=0.01745277777778f; private final float R2G=57.29577951308f; //id for lamp int m_LampID; // the geometry of the lamp // length of the three arms int[] m_Arm={40,50,10}; // angles for armposition: // thickness of arm int m_ArmW=3; // radius for spheres in elbows int m_ElbowRadius=6; // base board int m_BaseRadius=40; int m_BaseHeight=2; // lamps head float m_TopR=10; float m_OpenR=30; float m_HeadCyl=30; float m_HeadSpread=30;; // angles for each rotation float m_v1=0.0f; float m_v2=0.0f; float m_v3=10.0f; float m_v4=30.0f; // spot smoothness float m_SpotExp=0.0f; // quadric drawing precision int nLong=10; int nRound=20; // which lightsource int m_MyLight; boolean m_LampIsOn=false; public oneLamp(int LampID) { m_MyLight=GL.GL_LIGHT0+LampID+1; m_LampID=LampID; } public void draw(GL gl) { GLU glu=new GLU(); // preserve modelview gl.glPushMatrix(); if(!m_LampIsOn) gl.glDisable(m_MyLight); // use a quadric to draw parts of lamp GLUquadric glpQ=glu.gluNewQuadric(); // material int baseMaterial=stdMaterials.MAT_GREEN_PLASTIC; int elbowMaterial=stdMaterials.MAT_GREEN_PLASTIC; int armMaterial=stdMaterials.MAT_WARM_WHITE; // scale the integer coordinates down to unit box gl.glScalef(0.01f,0.01f,0.01f); // display the lamp // use lightsource as ID for lamp gl.glLoadName(m_LampID*10+0); // base, foot stdMaterials.setMaterial(gl,baseMaterial,GL.GL_FRONT); gl.glTranslatef(0.0f,0.0f,(float)-m_BaseHeight); glu.gluDisk(glpQ,0.0f,(float)m_BaseRadius,20,20); glu.gluCylinder(glpQ,(float)m_BaseRadius,(float)m_BaseRadius, (float)m_BaseHeight,nRound,nLong); gl.glTranslatef(0.0f,0.0f,(float)m_BaseHeight); glu.gluDisk(glpQ,0,(float)m_BaseRadius,nRound,nRound); stdMaterials.setMaterial(gl,elbowMaterial,GL.GL_FRONT); glu.gluSphere(glpQ,(float)m_ElbowRadius,20,20); // first arm, basic orientation around z-axis gl.glLoadName(m_LampID*10+1); gl.glRotatef(m_v1,0.0f,0.0f,1.0f); // from now on all arms are rotated around y-axis gl.glRotatef(m_v2,0.0f,1.0f,0.0f); stdMaterials.setMaterial(gl,armMaterial,GL.GL_FRONT); glu.gluCylinder(glpQ,m_ArmW,m_ArmW,m_Arm[0],nRound,nLong); gl.glTranslatef(0.0f,0.0f,(float)m_Arm[0]); stdMaterials.setMaterial(gl,elbowMaterial,GL.GL_FRONT); glu.gluSphere(glpQ,m_ElbowRadius,nRound,nRound); // second arm gl.glLoadName(m_LampID*10+2); gl.glRotatef(m_v3,0.0f,1.0f,0.0f); stdMaterials.setMaterial(gl,armMaterial,GL.GL_FRONT); glu.gluCylinder(glpQ,m_ArmW,m_ArmW,m_Arm[1],nRound,nLong); gl.glTranslatef(0.0f,0.0f,(float)m_Arm[1]); stdMaterials.setMaterial(gl,elbowMaterial,GL.GL_FRONT); glu.gluSphere(glpQ,m_ElbowRadius,nRound,nRound); // head gl.glLoadName(m_LampID*10+3); gl.glTranslatef(0.0f,0.0f,(float)m_ElbowRadius); gl.glRotatef(m_v4,0.0f,1.0f,0.0f); gl.glTranslatef(0.0f,0.0f,(float)-m_HeadCyl/2.0f); stdMaterials.setMaterial(gl,elbowMaterial,GL.GL_FRONT); glu.gluDisk(glpQ,0.0,m_TopR,nRound,nRound); glu.gluCylinder(glpQ,m_TopR,m_TopR,m_HeadCyl,nRound,nLong); gl.glTranslatef(0.0f,0.0f,(float)m_HeadCyl); glu.gluCylinder(glpQ,m_TopR,m_OpenR,m_HeadSpread,nRound,nLong); //lighton // lightbulb and inner screen if(m_LampIsOn) { // light inside of head stdMaterials.setMaterial(gl,stdMaterials.MAT_BRIGHT_WHITE,GL.GL_FRONT); glu.gluCylinder(glpQ,m_TopR-0.1f,m_OpenR-0.1f,m_HeadSpread,nRound,nLong); // specify and set the spotlight float spambient[] = {0.2f,0.2f,0.2f,1.0f }; float spdiffuse[] = {0.8f,0.8f,0.8f,1.0f }; float spspecular[] = {0.8f,0.8f,0.8f,1.0f }; float spposition[] = {0.0f,0.0f,0.0f,1.0f}; float spdirection[] = {0.0f,0.0f,1.0f}; float spotangle= R2G*(float)Math.atan((m_OpenR-m_TopR)/m_HeadSpread)+10; gl.glLightfv(m_MyLight, GL.GL_AMBIENT, spambient,0); gl.glLightfv(m_MyLight, GL.GL_DIFFUSE, spdiffuse,0); gl.glLightfv(m_MyLight, GL.GL_SPECULAR, spspecular,0); gl.glLightfv(m_MyLight, GL.GL_POSITION, spposition,0); gl.glLightfv(m_MyLight, GL.GL_SPOT_DIRECTION, spdirection,0); gl.glLightf (m_MyLight, GL.GL_SPOT_CUTOFF, spotangle); gl.glLightf(m_MyLight, GL.GL_SPOT_EXPONENT, m_SpotExp); gl.glEnable(GL.GL_LIGHTING); gl.glEnable(m_MyLight); // light the bulb float[] ev={1.0f,1.0f,1.0f}; float[] nev={0.0f,0.0f,0.0f}; gl.glMaterialfv(GL.GL_FRONT,GL.GL_EMISSION,ev,0); gl.glTranslatef(0.0f,0.0f,m_HeadSpread/5.0f); glu.gluSphere(glpQ,m_TopR,nRound,nRound); gl.glMaterialfv(GL.GL_FRONT,GL.GL_EMISSION,nev,0); } glu.gluSphere(glpQ,m_TopR,nRound,nRound); //eoflighton // finished with quadric, kill it glu.gluDeleteQuadric(glpQ); // reset matrix gl.glPopMatrix(); } public float GetAngle(int ix) { switch(ix) { case 0: return m_v1; case 1:return m_v2; case 2:return m_v3; case 3:return m_v4; default: return 0.0f; } } public void SetAngle(int x,float v) { switch(x) { case 0:m_v1=v; break; case 1:m_v2=v; break; case 2:m_v3=v; break; case 3:m_v4=v; break; default: ; } } public void SetLightOn(boolean on){m_LampIsOn=on;} public boolean GetLightOn() {return m_LampIsOn;} public void setSpotExponent(int v) {m_SpotExp=v/10.0f;} }
Rendering
The class GLrenderer controls the rendering of the scene and selection of lamp or lamp part. The lamps are kept in :
private Vector<oneLamp> pLamp
The method display administrates the rendering:
public void display(GLAutoDrawable drawable) { GL gl = drawable.getGL(); // Clear the color and depth buffers. gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT); if(m_pressed)// we have pressed right mousebutton { m_pressed=false; int n=pickSelected(m_thePanel.getGL(),m_lastX,m_lastY); if(n!=NO_OBJECT) { m_hilitedPart=n%10; // lamp part m_hilitedLamp=n/10; // lampindex m_bIsManipulating=true; } else { m_hilitedLamp=NO_OBJECT; // to make sure } } DrawScene(gl); }
The method DrawScene goes like this:
private void DrawScene(GL gl) { GLU glu=new GLU(); // Set up for scene gl.glMatrixMode(GL.GL_MODELVIEW); gl.glLoadIdentity(); glu.gluLookAt(m_zx,m_zy,m_zz, // eye 0.0f,0.0f,0.0f, // VRF 0.0f,0.0f,1.0f); // VUP // interactive movement // rotate around z-axis gl.glRotatef(m_zv,0.0f,0.0f,1.0f); // rotate around x-axis gl.glRotatef(m_xv,1.0f,0.0f,0.0f); // set a name;NO_OBJECT on anything irrelevant we draw gl.glLoadName(NO_OBJECT); GLUquadric glpQ=glu.gluNewQuadric(); //---------------- // draw table gl.glPushMatrix(); gl.glTranslatef(0.0f, 0.0f, -0.01f); stdMaterials.setMaterial(gl, stdMaterials.MAT_EMERALD, GL.GL_FRONT_AND_BACK); glu.gluDisk(glpQ,0.0,2.0,table_res,table_res); gl.glPopMatrix(); //----------------- // draw lamps // lamp 0 gl.glPushMatrix(); gl.glTranslatef(-1.0f,1.0f,0.0f); gl.glLoadName(0); pLamp.elementAt(0).draw(gl); gl.glPopMatrix(); // lamp 1 gl.glPushMatrix(); gl.glTranslatef(1.0f,1.0f,0.0f); gl.glLoadName(1); pLamp.elementAt(1).draw(gl); gl.glPopMatrix(); // lamp 2 gl.glPushMatrix(); gl.glTranslatef(1.0f,-1.0f,0.0f); gl.glLoadName(2); pLamp.elementAt(2).draw(gl); gl.glPopMatrix(); // lamp 3 gl.glPushMatrix(); gl.glTranslatef(-1.0f,-1.0f,0.0f); gl.glLoadName(2); pLamp.elementAt(3).draw(gl); gl.glPopMatrix(); // set a name on anything irrelevant we draw gl.glLoadName(NO_OBJECT); // finnish drawing gl.glFlush(); }
Naming
we know that we have to set a name for each part of the scene we want to identify by pointing. In this solution this means that we must identify which lamp and which part of the lamp. We use the strategy that the lamps are numbered from 0, and the parts are numbered as 10*lamppnumber + partnumber. In DrawScene:
// lamp 1 gl.glPushMatrix(); gl.glTranslatef(1.0f,1.0f,0.0f); gl.glLoadName(1); pLamp.elementAt(1).draw(gl); gl.glPopMatrix();
and in each lamps draw:
// first arm, basic orientation around z-axis gl.glLoadName(m_LampID*10+1); ...
The hit mechanism is identical to the strategy used in Selection and is implemented in method pickSelected in GLRenderer.
Light Effect
The light is a combination of three effects.
- We want to set up a spotlight that "fits" in the lamp shade
- We want the light bulb to look "lighted"
- We we want to make the inside of the lamp shade to look lighted
// lightbulb and inner screen if(m_LampIsOn) { // light inside of head stdMaterials.setMaterial(gl,stdMaterials.MAT_BRIGHT_WHITE,GL.GL_FRONT); glu.gluCylinder(glpQ,m_TopR-0.1f,m_OpenR-0.1f,m_HeadSpread,nRound,nLong); // specify and set the spotlight float spambient[] = {0.2f,0.2f,0.2f,1.0f }; float spdiffuse[] = {0.8f,0.8f,0.8f,1.0f }; float spspecular[] = {0.8f,0.8f,0.8f,1.0f }; float spposition[] = {0.0f,0.0f,0.0f,1.0f}; float spdirection[] = {0.0f,0.0f,1.0f}; float spotangle= R2G*(float)Math.atan((m_OpenR-m_TopR)/m_HeadSpread)+10; gl.glLightfv(m_MyLight, GL.GL_AMBIENT, spambient,0); gl.glLightfv(m_MyLight, GL.GL_DIFFUSE, spdiffuse,0); gl.glLightfv(m_MyLight, GL.GL_SPECULAR, spspecular,0); gl.glLightfv(m_MyLight, GL.GL_POSITION, spposition,0); gl.glLightfv(m_MyLight, GL.GL_SPOT_DIRECTION, spdirection,0); gl.glLightf (m_MyLight, GL.GL_SPOT_CUTOFF, spotangle); gl.glLightf(m_MyLight, GL.GL_SPOT_EXPONENT, m_SpotExp); gl.glEnable(GL.GL_LIGHTING); gl.glEnable(m_MyLight); // light the bulb float[] ev={1.0f,1.0f,1.0f}; float[] nev={0.0f,0.0f,0.0f}; gl.glMaterialfv(GL.GL_FRONT,GL.GL_EMISSION,ev,0); gl.glTranslatef(0.0f,0.0f,m_HeadSpread/5.0f); glu.gluSphere(glpQ,m_TopR,nRound,nRound); gl.glMaterialfv(GL.GL_FRONT,GL.GL_EMISSION,nev,0); } glu.gluSphere(glpQ,m_TopR,nRound,nRound);
Note the use of GL_SPOT_EXPONENT that softens the edges of the spot. Comined with the granularity of the table, we can control the light effect. Both the spot exponent and the granularity can be manipulated in the application. See also Module Shades and smoothness